OR
HOW TO BUILD A SOLAR OVEN!

Supplies Needed:
• Pizza box
• Ruler
• Felt marker
• Aluminum foil
• Box cutter
• Glue
• Scissors
• Clear plastic wrap
• Tape
• Black construction paper
• Straw

DID YOU KNOW?
Plants use sunlight to make their food (called photosynthesis).
Animals get their energy by eating the plants.
Sunlight makes heat energy that drives ocean currents, wind and weather!
In fact, nearly all energy on Earth originates from sunlight.

Powerful stuff!

Step 1
Collect all of your supplies!
If you need help with any of the steps please ask a teacher, parent, or leader.

Step 2
On the top of the lid, measure 2 cm from the front and each side. Draw a square so that it touches the back side of the lid.

Step 3
Cut the front and two sides of the square, leaving the back edge attached. This will make a flap that folds up.
Step 4
Take a piece of foil and glue it to the inside of the flap you just made, shiny side out.
Glue more foil to the inside of the box so it is also covered, shiny side out.

DID YOU KNOW?
Light travels through space to Earth as a wave.
When this wave of light shines on something, it causes the molecules to start vibrating faster. When this happens, it makes more heat!
Just like when you rub your hands together quickly. Try it! Feel them heating up? This is what sunlight does to tiny molecules.

Step 5
Next you are going to make a “double pane” window.
Tape a piece of plastic wrap to the lid of the box, completely covering the hole you made when you cut the flap.

The Light & The Dark Side
Something lightly colored, such as snow reflects most of the light that touches it, keeping it cool.
Dark colored things absorb most of the light that touches them, so very little is reflected. This means the molecules vibrate more and make more heat.

Step 6
Open the lid and tape a piece of plastic wrap to the inside part of the window.

See Through?
Transparent - light is able to pass through it
Opaque - light can not pass through it.
What materials in your oven are transparent and which are opaque?
Step 7
Cut your black paper to size and glue it to the inside of the box. The black construction paper helps to absorb the sun's heat!

DID YOU KNOW?
Your solar oven works like a greenhouse, the transparent plastic allows sunlight in and helps trap the heat.

Using solar energy helps save the environment.

Step 8 - Get Cooking!
Place your oven in the sun, you can use a straw to help angle the sun into the oven. Enjoy!

More Dark & Light Side
The black construction paper helps absorb the light and make more heat.

The aluminum foil reflects the light onto the food.

On a hot sunny day this oven could raise the temperature up to 200 °C.

CHALLENGE!
What else could you cook in your oven?

How hot does it get if it is cloudy?
Solar Oven Experiment: Will Clouds Make a Difference?
(optional - takes 2 days, 1 hour per day)

What is an experiment?
It is testing an idea to see if it is correct.

In science it is important to have something to compare with so we know when things change.

PART 1 Cook some food on a hot sunny day, in direct sunlight.

We will compare future experiments to this, so it is important to write down what you do. Record this information in the chart at the bottom of the page:

- Time of day
- Where you placed your oven
- Type and size of food
- How long it takes to cook your food
- Use a thermometer to test temperatures
 - Temperature outside
 - Temperature inside the pizza box

Write any other observations (things you saw, felt, smelled, heard or tasted) here:

__
__
__

What else do you think you could cook in your solar oven? ______________________________

__

Make a guess. Do you think it will cook faster or slower on a cloudy day? _________________

PART 2 On the next cloudy day do the experiment again the exact same way including:

- Time of day
- Where you placed your solar oven
- Type and size of food

Record the same information as before in the chart below.

It is important to only change one thing in an experiment so you know what is causing the difference.

PART 3 What did you find out? Did it cook as well as the first time? Explain why you think it did or did not. Look at some of the hints on the Activity Sheet where it says “Did You Know?”.

__
__
__

CHALLENGE! Try changing the design of the oven, could you use different materials? Try different foods and even make a solar cook book.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Time of Day (keep this the same)</th>
<th>Cook Time (keep this the same)</th>
<th>Outside Temperature</th>
<th>Inside Pizza Box Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudy Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pro Tip! Take photographs of the temperature, time of day and angle of the sun on the ground, as an easy way to record this information.