
 N

How To Use The Calculator

In the "Calculator" tab, please enter information about your vehicle usage into all green entry fields at the top and then select your vehicle preferences.

If the ICE vehicle you want to compare is not listed, go on the internet to get the details and fill in the blanks under "Other Vehicle".

Press the "Click Here to Compute the Savings" button (top right-hand corner) to compute a cost and GHG comparison of the vehicles. Click the "Reset" button to start over.

Review the Results

Compare Vehicles

The first three items have a bar graph below them comparing the electric vehicle with the ICE you chose.

- Fuel Cost Per Year
- Maintenance Cost Per Year
-GHG Emissions (tCO2e/yr)
\qquad
Short for "tonnes of carbon dioxide equivalent,"
tCO2e is a handy way of talking about all
Greenhouse Gas (GHG) emissions. There are six main GHGs, so it's helpful to count them with a single unit: tCO2e. "Tonne" is the same as metric ton.

Purchase Price

More Information

Savings Per Year
Lifetime Savings
Total Lifetime Savings Fuel and Maintenance
Total Lifetime Savings Including Purchase Price
Graphs

- Lifetime Cost Analysis - compares yearly expenses over time for both vehicles
- Lifetime GHG Emissions - compares GHG emissions over lifetime of both vehicles

How Are GHG Emissions Measured?

GHG emissions are often measured in carbon dioxide (CO2) equivalent. To convert emissions of a gas into CO2 equivalent, its emissions are multiplied by the gas's Global Warming Potential (GWP). The GWP takes into account the fact that many gases are more effective at warming Earth than CO2, per unit mass.
For more about GWPs see Canada's website:
https://www.canada.ca/en/environment-climate-
change/services/climate-change/greenhouse-gas-emissions/quantification-guidance/global-warmingpotentials.html

So you have a GHG number for your vehicle - what does that mean?
Use this calculator to convert emissions or energy data into concrete terms you can understand - such as the annual CO2 emissions of cars, households, and power plants.

Instructions:

- Go to the website or use the QR code: https://oee.nrcan.gc.ca/corporate/statistic\$/neud/ dpa/calculator/ghg-calculator.cfm\#results/
- Select "If You have Emissions data" tab
- Type into the first box for "CO2 - Carbon Dioxide or CO2 Equivalent*"
- Use the GHG Emissions (tCO2e/yr) number you found for a vehicle when you used the Electric Vehicles
Savings Calculator. Type this number in.
- Choose the unit "Metric Tons"
- Press green "Calculate" button
- "Equivalency Results" will appear. View all of the ways to describe your emission number.

Greenplanet Energy analytics
\qquad Class:

COMPARE AN EV TO AN ICE ($\quad 125 \mathrm{pts}$)

INSTRUCTIONS

Step 1. Open the Electric Vehicle Savings Calculator as described on page 1.
Step 2. To see how the Calculator works, enter the following information:

- Annual Distance Driven: 20000 km
- Price of Fuel:
1.85 per litre
- Electricity Rate:
0.10 per kWh
- Lifetime of New Vehicle: 10 years
- Additional Rebate Value 0
- Choose Electric Vehicle: Ford F150 Lightning Standard Range
- Choose ICE:

Ford F150
Step 3. Press green "Click here" button
Step 4. Now you can view the results and answer these questions.

FILL IN THE BLANK

1. How much electricity does the F150 Lightning use in 100 km? \qquad kWh (1 pt)
2. What is the F150 Lightning range on an average single charge? \qquad km (1 pt)
3. How much gasoline does the standard F 150 use in and average 100 km ? \qquad L(1 pt)
4. What does GHG mean? \qquad
5. What does tCO2e stand for? \qquad
6. Why is tCO2e used? \qquad
\qquad
7. COMPLETE THE CHART (9 pts)

	F150 ICE	F150 Lightning EV	EV SAVINGS/YR
Fuel cost/yr	$\$$	$\$$	$\$$
Maintenance/yr	$\$$	$\$$	$\$$
GHG (tCO2e/yr)			

8. How are the EV Savings calculated in the chart above?
\qquad
\qquad
9. How would you calculate Lifetime Savings for the information in the chart above? \qquad
10.Look at the Lifetime Cost Analysis graph. What two values are being compared? \qquad
10. Using the Lifetime Cost Analysis graph - how many years do you need to own the F150 EV to break even on the cost of the vehicle compared to the savings? \qquad (1 pts)
11. Using the Lifetime GHG Emissions graph - what happens over time to the amount of GHG's produced by the F150 ICE compared to the EV? \qquad

BONUS (5 points)

Go back to the calculator and try comparing other vehicles. Fill in a chart like Question \#7 for the two new vehicles

TEACHER RESOURCE: Electric Vehicles - Doing the Math

If your students do not have access to the internet, you can download the EXCEL calculator for them.
If they do not have access to EXCEL, you can provide a printout of page 7 for them to analyze instead.

Answer Key

1. 30.6 kWh
2. 370 km
3. 11.7 L
4. Greenhouse Gas
5. tonnes of carbon dioxide equivalent
6. There are six main GHGs, so it's helpful to count them with a single unit.
7.

	F150 ICE	F150 Lightning EV	EV SAVINGS/YR
Fuel cost/yr	$\$ 3,510.00$	$\$ 918.00$	$\$ 2,592.00$
Maintenance/yr	$\$ 1,549.40$	$\$ 787.40$	$\$ 762.00$
GHG (tCO2e/yr)	5.38	3.49	1.89

8. Take the values for the F150 ICE and subtract the F150 EV.
9. Multiply by the Lifetime Use of the New Vehicle, which is 10 (in this example).
10. Total Cost of the Vehicle and Years of Ownership
11. 6 years
12. The rate of GHG production for the ICE increases much more than the EV. propane cylinders
used for home
barbeques
 propane cylinders
used for home
barbeques propane cylinders
used for home
barbeques propane cylinders
used for home
barbeques

Enrichment Activity

Have students explore the Greenhouse Gas Equivalencies Calculator described on page 3. If students plug in the GHG number from the first activity, (3.49 metric tons tCO2e/yr in this example), this calculator will provide the following:

Equivalency Results

CO_{2} emissions from

BONUS (5 points)
Answers will vary

TEACHER RESOURCE: Curriculum Connections

Science Grade 9

Unit D: Electrical Principles and Technologies

1. Investigate and interpret the use of devices to convert various forms of energy to electrical energy, and electrical energy to other forms of energy
2. Describe technologies for transfer and control of electrical energy
3. Identify and estimate energy inputs and outputs for example devices and systems, and evaluate the efficiency of energy conversions

Science 14

Unit B: Understanding Energy Transfer Technologies

3. Describe and compare simple machines as devices that transfer energy and multiply forces or distances

- Explain the need to encourage and support the development of machines that are efficient and rely upon renewable energy sources (e.g., hand-wound radios, solarpowered calculators, solar cookers)

Science 24

Outcomes for Science, Technology and Society (STS) and Knowledge 1. Investigate and interpret transformation and conservation of various forms of energy in physical and technological systems
2. Investigate and analyze electrical energy conversion devices in terms of energy conversions, rate of energy transfer and efficiency

Unit B: Understanding Common Energy Conversion Systems
Science 10

Unit B: Energy Flow in
 Technological Systems

- Forms of energy, energy transformation, renewable and nonrenewable energy
- Efficient use of energy and the environmental impacts of the inefficient use of energy
- Explain the need for efficient energy conversions to protect our environment and to make judicious use of natural resources (e.g., advancement in energy efficiency; Aboriginal perspectives on taking care of natural resources)

Science 20

Unit B: Changes in Motion
Specific Outcomes for Science, Technology and Society

- Explain that the goal of technology is to provide solutions to practical problems
Science 30
Unit C: Electromagnetic Energy Key Concepts:
- Devices based on electric and magnetic fields (electric motors, generators and transformers)

Explore the Analytics of GHG Reduction

As mentioned in the introduction to this activity, measurement is essential to solving problems, making good decisions and taking action. This means using analytics.
A useful resource is the Climate Action website:
https://
climateactionworks.ca/

Greenplanet Energy Analytics (GEA) has developed and maintains a collection of case studies and success stories in a sophisticated database that focus on "climate action" to reduce greenhouse gas emissions.
Each record is an actual success story with every effort to reasonably and accurately quantify both the economic costs and

Career And Technology Studies (CTS)

Natural Resources (NAT)

The focus of the NAT cluster is for students to develop and apply the knowledge, skills and attitudes to work individually and collectively, as private citizens and as members of the work force, toward the conservation and responsible use of energy and natural resources.

Trades, Manufacturing \& Transportation (TMT)

The focus of the TMT cluster is for students to develop and apply important knowledge, skills and attitudes relative to the manufacture and assembly of products from individual components and the processing of raw materials into products.
Math - all grade levels
Analyze data, charts and graphs and draw general conclusions from them.

Greenplanet
ENERGY ANALYTICS
benefits, and the climate benefit in terms of GHG reduction.

Calculator Tools

The site provides carbon / GHG reduction calculators that can work in parallel with the database. These tools make the calculations as transparent as possible, and can be customized for local data.
This site will also serve as a teaching and learning tool for students and decision-makers in the schools, First Nations communities, municipalities, businesses and non-profit societies.

Sample Data for the EV Savings Calculator

